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Phase transitions in the square well and hard ramrod lattice 
gases 

M C Goldfinch and D W Wood 
Mathematics Department, University of Nottingham, Nottingham, England 

Received 21 September 1981 

Abstract. A numerical investigation of the two-dimensional square well lattice gas and a gas 
of hard ramrods has been carried out using the scaling transformation. Both models appear 
to exhibit a single Ising-model-like second-order phase transition over the whole tempera- 
ture range. 

1. Introduction 

In a previous publication on vertex model representations of lattice gas models (Wood 
and Goldfinch 1980) the authors have shown that the scaling transformation (Nightin- 
gale 1976) can be a very powerful numerical method for obtaining all of the critical 
parameters associated with the phase transitions of lattice gas models. When this 
method was applied to the two-dimensional hard square lattice gas it gave extremely 
sharp evidence that this model has a single fluid-solid-like second-order phase tran- 
sition, which is of the same class as the two-dimensional Ising model. A strong feature 
of the method is the relative ease with which the interaction details of such model 
Hamiltonians can be altered, and the automatic transfer between successive levels of 
approximation. 

In the present paper we have applied the scaling transformation to a pair of 
two-dimensional lattice gas models, both of which contain a symmetric hard core 
extending over a nearest-neighbour distance. For comparison we have duplicated all of 
our results for the Ising model lattice gas of Yang and Lee (1952) with purely repulsive 
forces. The latter model is of course the king model of an antiferromagnet in a field, 
and the results given here can be mapped onto the corresponding transition line 
(Elc, Tc); recently an estimate of this line has been obtained by Sneddon (1979) also 
using a scaling transformation?. The two models are Fisher’s super-exchange lattice gas 
(Fisher 1963), which can also be viewed as a gas of hard ramrods of arbitrary length (see 
Wood and Goldfinch 1980 and below), and the square well lattice gas (Runnels et a1 
1970). All of the models in this paper have a characteristic and finite interaction 
potential parameter, and we shall use the same symbol Q to denote this parameter in 
each model; Q > 0 and Q < 0 correspond to repulsive and attractive forces, respectively, 
throughout. 

t We believe that the precision of the present calculations shows there to be substantial deviations from the 
conjectured exact form of the transition line (I&, T,) put forward by Muller-Hartmann and Zittartz (1977). 
These deviations increase as one moves away from the Ising model critical point (0, Tc). This has also been 
noted by Baxter etal (1980). 
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1328 M C Goldfinch and D W Wood 

Several authors have studied lattice gas models for which in addition to a symmetric 
hard core there exists an attractive range beyond the core (Orban and Bellemans 1968, 
Orban et a1 1968, Runnels et a1 1970, for a review see Runnels 1972). In both 
approximate and exact work (Gaunt and Fisher 1965, Gaunt 1967, Baxter et a1 1980, 
Baxter 1980, Wood and Goldfinch 1980) it is clear that a symmetric hard core will 
promote a single second-order phase transition, which is really of a gas-solid type. 
Previous authors have speculated that a third liquid-like phase could be obtained from 
a Hamiltonian which contained a range of attraction beyond the hard core. Thus 
Fisher's super-exchange gas on the square net lattice has a nearest-neighbour (NN) hard 
core with an interaction potential cp across next-nearest-neighbour (NNN) distances but 
only within alternate squares of the lattice (the white squares on a chess board say). This 
contrived model is of interest because it can be solved exactly at one and only one value 
of the temperature given by exp(-Bcp) = 2, at which point the model has one Ising-like 
second-order transition. Fisher speculated that in the attractive domain cp < 0 (p = 0 is 
the case which is equivalent to the hard square gas) the transition would remain of the 
Ising model type throughout the whole temperature domain. 

Runnels et a1 (1970) using the so-called exact finite method completed Fisher's 
model by including the potential cp across all of the squares of the net, thus forming the 
square well lattice gas. These authors in a qualitative interpretation of their isothermals 
obtained on finite systems concluded that in the attractive domain cp < 0 there was a 
single transition which at low temperatures was first order, possibly turning to second 
order at higher temperatures. 

In our study of these models we find that Fisher's speculation is verificd at all 
temperatures but that Runnels et a1 appear to have been misled by their data; the 
square well gas seems to have one second-order transition at all temperatures, which 
like the super-exchange gas remains Ising-model-like everywhere. 

2. Models and representations 

Consider the square net lattice sites labelled i = 1,2, . . . , N to have site variables ti = 1 
(0) if an atom is present (or absent) at the site; then the two hard core lattice gas models 
in this work have a grand partition function 9 given by 

( l - t a f b )  xraf"' n XIbrb' n Z t  n zfb  (1) 
{f) (ab) (nu ' )  (bb')  ( a )  ( b )  

where z is the activity and x =exp(-fiq). The lattice has been divided into its two 
sublattices denoted here by a sites and b sites (each a site is surrounded by four b sites), 
thus in (1) (ab) runs over all NN pairs of sites and (aa') and (66') run all over NNN pairs of 
sites for the square well gas, but over all such pairs in 'white' squares only for the 
super-exchange gas. 

Following Wood and Goldfinch (1980) the super-exchange gas can be made 
equivalent to a special case of the sixteen-vertex model on the square net lattice in 
which the non-zero vertex weights are 

w, = l  U? = W' =xz wg r Wl0 = wl, = = iiz 

A typical configuration of such a vertex model is shown in figure 1, hence the name 
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Figure 1. A configuration of the lattice ramrod model. 

ramrod model (first given by Nagle 1968); clearly the model is equivalent to a mixture of 
hard rods of arbitrary length which can assume horizontal or vertical positions. 
Alternatively it is a gas of dimers with ‘sticky’ ends, which can join end on through the 
potential cp. 

There seems to be no simple vertex model form for the square well gas, which is 
probably best viewed as a gas on square molecules with sticky sides as illustrated in 
figure 2. The scaling transformation identifies a second-order phase transition through 
the solutions of the equation 

ntmoo(z, X) = mtn.m(z, X)  (3) 
at critical points z,(n, m), x,(n, m). Here &,m is the correlation length obtained from a 
toroidal k X CO square net, and zc(n, m) is an approximant to the true critical activity 
zc(0o, CO) where 6m.W diverges. The correlation lengths are obtained in the usual way via 
the relation 

t m m  = l/ln(~i(m)/lA2(m)I) (4) 
where h l ( m )  and Az(m) are the largest and next largest (in modulus) eigenvalues of a 
transfer matrix established between adjacent columns of m sites in the m x CO toroidal 
lattice. The correlation length critical exponent v is obtained as a sequence of 
approximants y ( n ,  m) (y = l / v )  given by 

(m/n)y‘n”’ = (n /m) t z (m,  m) / tZ(n ,  CO) z = zc(n, m) ( 5 )  

Figure 2. A configuration in the square well gas; interactions act along the broken lines. 
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where the z subscript signifies the partial derivative (see Wood and Goldfinch (1980) 
for further details). 

The transfer matrix for the square well gas was established directly in terms of the 
site variables, thus if r and 7 represent the m site variables on neighbouring columns of 
the m x 00 system, then a 2" x 2" transfer matrix is given by 

m m 

T(r : 7) = n (1 - titi+l)(l -TiTi+l)( l  - tiTi) n X ( ~ ~ 7 * - 1 + 7 i f ~ - l )  2 4 ~ + 7 1 1  * (6) 
i = l  i = l  

In the computational scheme for the super-exchange gas we have followed the vertex 
model form in (2) which has a transfer matrix in the form 

T(c7 :U') = 1 P(CV) 
C" 

(7) 

where v and U' represent the states of the neighbouring horizontal bonds and C, is a 
configuration of the intervening vertical bonds (again a 2" x 2" matrix), thus 0; (if and 
C, define a complete column of vertices, and P(Cv) is the product of the vertex weights 
in (2) down this column. 

Using the transfer matrices in (6) and (7) numerical solutions to (3) have been 
obtained to yield approximant sequences z,(m, n ) ,  and ~ ( m ,  n )  over a range of values of 
the reduced temperature kT,lq I. Thermodynamic properties at critical points can 
easily be found by numerically forming the appropriate thermodynamic relation using 
the maximum eigenvalue for the largest strip and using the 'best' values for the critical 
point zc.  The critical pressure and density curves shown below have been obtained in 
this way, and here of course the method makes contact with the earlier work using the 
exact finite method (Runnels 1972). 

3. Critical thermodynamic properties 

The full scale of our calculations is illustrated here for the ramrod gas; the numerical 
results for this model are given in tables 1-4 and include both attractive and repulsive 
forces (q < 0, and q > 0 respectively). The critical density and pressure values which 
are given in tables 3 and 4 are adapted to fit the ramrod model, which clearly has a 
maximum packing density of 1;  the critical densities and pressures for the correspond- 
ing super-exchange gas are half of the quoted values. The ramrod model is useful to us 
here in that it provides a good check on the numerical accuracy of the results at two 
points; x = 1 is the hard square gas, and x = 2 is Fisher's exactly solvable point in the 
super-exchange gas. These points are marked in the tables and the accuracy of the 
scaling calculations in each case is excellent. In the range 1 < x < 2 we clearly expect 
that this level of accuracy will be maintained. The bottom row in tables 1 and 2 
corresponds to applying a simple optimal extrapolation fit (similar to Nightingale 
(1976)) to some of the sequences ( n ,  m) and we expect that these figures will be within 
one per cent of the exact results over most of the tables. 

Fisher's conjecture that his model would exhibit a single Ising-model-like phase 
transition at all temperatures is quite clearly correct, and indeed appears to extend into 
the repulsive domain. The corresponding numerical results which we have obtained for 
the square well lattice gas and the repulsive force Ising model lattice gas of Yang and 
Lee (1952) are listed in tables 5 and 6, but here we list only the best estimates 
corresponding to the bottom rows in the earlier tables for the ramrod model. In their 
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Figure 3. The critical activities of A, the ramrod model; B, the square well gas; C, the 
repulsive king model. 

Figure 4. Critical density curves at various values of the reduced temperature for A, the 
ramrod model; B, the square well gas; C, the repulsive Ising model. 
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kT/ l ip l  

Figure 5. Critical pressure curves for A, the ramrod model; B, the square well gas; C, the 
repulsive king model. 

?< 

Figure 6. Critical density-pressure curves for A, the ramrod model; B, the square well gas; 
C, the repulsive king model. 



Phase transitions in lattice gases 1337 

Figure 7. Isothermals for the square well gas, 
obtained by Runnels et a1 (1970). The isotherm 
corresponding to the square well gas is marked 0, and 

'.* 0.4 o.6 0.' the line of second-order transition points found in 
this work is marked by the full curve. 

0 
P '90 

work on the square well gas Runnels et al, using the exact finite method, concluded that 
the model had one second-order transition at all temperatures in the repulsive domain; 
this is clearly correct. In the attractive domain the shape of the isothermals led Runnels 
et a1 to conclude that the system had a first-order transition at low temperatures, and 
that this might change into a second-order transition at higher temperatures. This 
conclusion appears to us to be wrong; we think that the scaling calculations here show 
that the model has just one second-order transition at all temperatures which remains 
everywhere of the Ising model type. Thus the scaling calculations here show that the 
super-exchange and square well gases behave in exactly the same way throughout the 
temperature range both for repulsive and attractive forces. 

The results which we have obtained for all three models are compared graphically in 
figures 3-6, and in figure 7 we have superimposed the critical points p,, P, onto the 
original isothermals of Runnels et a1 which they obtained from a toroidal strip with 
m = 16. 
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