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Phase transitions in the square well and hard ramrod lattice
gases

M C Goldfinch and D W Wood
Mathematics Department, University of Nottingham, Nottingham, England

Received 21 September 1981

Abstract. A numerical investigation of the two-dimensional square weli lattice gas and a gas
of hard ramrods has been carried out using the scaling transformation. Both models appear
to exhibit a single Ising-model-like second-order phase transition over the whole tempera-
ture range.

1. Introduction

In a previous publication on vertex model representations of lattice gas models (Wood
and Goldfinch 1980) the authors have shown that the scaling transformation (Nightin-
gale 1976) can be a very powerful numerical method for obtaining all of the critical
parameters associated with the phase transitions of lattice gas models. When this
method was applied to the two-dimensional hard square lattice gas it gave extremely
sharp evidence that this model has a single fluid-solid-like second-order phase tran-
sition, which is of the same class as the two-dimensional Ising model. A strong feature
of the method is the relative ease with which the interaction details of such model
Hamiltonians can be altered, and the automatic transfer between successive levels of
approximation.

In the present paper we have applied the scaling transformation to a pair of
two-dimensional lattice gas models, both of which contain a symmetric hard core
extending over a nearest-neighbour distance. For comparison we have duplicated all of
our results for the Ising model lattice gas of Yang and Lee (1952) with purely repulsive
forces. The latter model is of course the Ising model of an antiferromagnet in a field,
and the results given here can be mapped onto the corresponding transition line
(H_, T.); recently an estimate of this line has been obtained by Sneddon (1979) also
using a scaling transformationt. The two models are Fisher’s super-exchange lattice gas
(Fisher 1963), which can also be viewed as a gas of hard ramrods of arbitrary length (see
Wood and Goldfinch 1980 and below), and the square well lattice gas (Runnels et al
1970). All of the models in this paper have a characteristic and finite interaction
potential parameter, and we shall use the same symbol ¢ to denote this parameter in
each model; ¢ >0 and ¢ <0 correspond to repulsive and attractive forces, respectively,
throughout.

t We believe that the precision of the present calculations shows there to be substantial deviations from the
conjectured exact form of the transition line (H., T,) put forward by Muller-Hartmann and Zittartz (1977).
These deviations increase as one moves away from the Ising model critical point {0, 7). This has also been
noted by Baxter et al (1980).
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Several authors have studied lattice gas models for which in addition to a symmetric
hard core there exists an attractive range beyond the core (Orban and Bellemans 1968,
Orban et al 1968, Runnels et al 1970, for a review see Runnels 1972). In both
approximate and exact work (Gaunt and Fisher 1965, Gaunt 1967, Baxter et al 1980,
Baxter 1980, Wood and Goldfinch 1980) it is clear that a symmetric hard core will
promote a single second-order phase transition, which is really of a gas-solid type.
Previous authors have speculated that a third liquid-like phase could be obtained from
a Hamiltonian which contained a range of attraction beyond the hard core. Thus
Fisher’s super-exchange gas on the square net lattice has a nearest-neighbour (NN) hard
core with an interaction potential ¢ across next-nearest-neighbour (NNN) distances but
only within alternate squares of the lattice (the white squares on a chess board say). This
contrived model is of interest because it can be solved exactly at one and only one value
of the temperature given by exp(—B¢) = 2, at which point the model has one Ising-like
second-order transition. Fisher speculated that in the attractive domain ¢ <0 (¢ =0 is
the case which is equivalent to the hard square gas) the transition would remain of the
Ising model type throughout the whole temperature domain.

Runnels er al (1970) using the so-called exact finite method completed Fisher’s
model by including the potential ¢ across all of the squares of the net, thus forming the
square well lattice gas. These authors in a qualitative interpretation of their isothermals
obtained on finite systems concluded that in the attractive domain ¢ <0 there was a
single transition which at low temperatures was first order, possibly turning to second
order at higher temperatures.

In our study of these models we find that Fisher’s speculation is verificd at all
temperatures but that Runnels ef al appear to have been misled by their data; the
square well gas seems to have one second-order transition at all temperatures, which
like the super-exchange gas remains Ising-model-like everywhere.

2. Models and representations

Consider the square net lattice sites labelled i = 1, 2, ... , N to have site variables 1, = 1
(0) if an atom is present (or absent) at the site; then the two hard core lattice gas models
in this work have a grand partition function = given by
E=Y 1 (A—taty) T] x™= [T x® [T2=]] 2" (1)
{t} (ab) (aa") (bb") (a) (&)

where z is the activity and x =exp(—B¢). The lattice has been divided into its two
sublattices denoted here by a sites and b sites (each a site is surrounded by four b sites),
thus in (1) (ab) runs over all NN pairs of sites and (aa’) and (4b) run all over NNN pairs of
sites for the square well gas, but over all such pairs in ‘white’ squares only for the
super-exchange gas.

Following Wood and Goldfinch (1980) the super-exchange gas can be made
equivalent to a special case of the sixteen-vertex model on the square net lattice in
which the non-zero vertex weights are
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A typical configuration of such a vertex model is shown in figure 1, hence the name
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Figure 1. A configuration of the lattice ramrod model.

ramrod model (first given by Nagle 1968); clearly the model is equivalent to a mixture of
hard rods of arbitrary length which can assume horizontal or vertical positions.
Alternatively it is a gas of dimers with ‘sticky’ ends, which can join end on through the
potential ¢.

There seems to be no simple vertex model form for the square well gas, which is
probably best viewed as a gas on square molecules with sticky sides as illustrated in
figure 2. The scaling transformation identifies a second-order phase transition through
the solutions of the equation

NEmoo(z, X) = Méno(2, X) (3)

at critical points z.(n, m), x.(n, m). Here & « is the correlation length obtained from a
toroidal k x o square net, and z.{n, m) is an approximant to the true critical activity
z.(00, 00) where £ . diverges. The correlation lengths are obtained in the usual way via
the relation

émo=1/In(a1(m)/IA2(m))) )

where A1(m) and A,(m) are the largest and next largest (in modulus) eigenvalues of a
transfer matrix established between adjacent columns of m sites in the m X oo toroidal
lattice. The correlation length critical exponent » is obtained as a sequence of
approximants y(n, m) (y = 1/») given by

(m/n)’"™ = (n/m)¢.(m, )/, (n, ) z=z/(n,m) (5)
s N

Figure 2. A configuration in the square well gas; interactions act along the broken lines.
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where the z subscript signifies the partial derivative (see Wood and Goldfinch (1980)
for further details).

The transfer matrix for the square well gas was established directly in terms of the
site variables, thus if ¢ and 7 represent the m site variables on neighbouring columns of
the m x co system, then a 2™ X 2™ transfer matrix is given by

T(t:7r)=[] A-ttie)A =71 )1 —t7) 11 x(t"f‘_lﬂil‘q)Z%EU"H")~ (6)
i=1 i=1

In the computational scheme for the super-exchange gas we have followed the vertex
model form in (2) which has a transfer matrix in the form

T{o:0d') =; P(C.) (7

where o and o' represent the states of the neighbouring horizontal bonds and C, is a
configuration of the intervening vertical bonds (again a 2™ x 2™ matrix), thus o, o’ and
C, define a complete column of vertices, and P(C,) is the product of the vertex weights
in (2) down this column.

Using the transfer matrices in (6) and (7) numerical solutions to (3) have been
obtained to yield approximant sequences z.(m, n), and v (m, n) over a range of values of
the reduced temperature kT/|p|. Thermodynamic properties at critical points can
easily be found by numerically forming the appropriate thermodynamic relation using
the maximum eigenvalue for the largest strip and using the ‘best’ values for the critical
point z.. The critical pressure and density curves shown below have been obtained in
this way, and here of course the method makes contact with the earlier work using the
exact finite method (Runnels 1972).

3. Critical thermodynamic properties

The full scale of our calculations is illustrated here for the ramrod gas; the numerical
results for this model are given in tables 1-4 and include both attractive and repulsive
forces (¢ <0, and ¢ >0 respectively). The critical density and pressure values which
are given in tables 3 and 4 are adapted to fit the ramrod model, which clearly has a
maximum packing density of 1; the critical densities and pressures for the correspond-
ing super-exchange gas are half of the quoted values. The ramrod model is useful to us
here in that it provides a good check on the numerical accuracy of the results at two
points; x =1 is the hard square gas, and x =2 is Fisher's exactly solvable point in the
super-exchange gas. These points are marked in the tables and the accuracy of the
scaling calculations in each case is excellent. In the range 1 <x <2 we clearly expect
that this level of accuracy will be maintained. The bottom row in tables 1 and 2
corresponds to applying a simple optimal extrapolation fit (similar to Nightingale
(1976)) to some of the sequences (n, m) and we expect that these figures will be within
one per cent of the exact results over most of the tables.

Fisher’s conjecture that his model would exhibit a single Ising-model-like phase
transition at all temperatures is quite clearly correct, and indeed appears to extend into
the repulsive domain. The corresponding numerical results which we have obtained for
the square well lattice gas and the repulsive force Ising model lattice gas of Yang and
Lee (1952) are listed in tables 5 and 6, but here we list only the best estimates
corresponding to the bottom rows in the earlier tables for the ramrod model. In their
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Figure 3. The critical activities of A, the ramrod model; B, the square well gas; C, the
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Figure 4. Critical density curves at various values of the reduced temperature for A, the
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Figure 5. Critical pressure curves for A, the ramrod model; B, the square well gas; C, the
repulsive Ising model.
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Figure 6. Critical density-pressure curves for A, the ramrod model; B, the square well gas;
C, the repulsive Ising model.
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Figure 7. Isothermals for the square well gas,
obtained by Runnels et al (1970). The isotherm
corresponding to the square well gas is marked 0, and
the line of second-order transition points found in
this work is marked by the full curve.

work on the square well gas Runnels et al, using the exact finite method, concluded that
the model had one second-order transition at all temperatures in the repulsive domain;
this is clearly correct. In the attractive domain the shape of the isothermals led Runnels
et al to conclude that the system had a first-order transition at low temperatures, and
that this might change into a second-order transition at higher temperatures. This
conclusion appears to us to be wrong; we think that the scaling calculations here show
that the model has just one second-order transition at all temperatures which remains
everywhere of the Ising model type. Thus the scaling calculations here show that the
super-exchange and square well gases behave in exactly the same way throughout the
temperature range both for repulsive and attractive forces.

The results which we have obtained for all three models are compared graphically in
figures 3-6, and in figure 7 we have superimposed the critical points p., P. onto the
original isothermals of Runnels et al which they obtained from a toroidal strip with
m=16.
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